- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Aarrestad, Thea Klaeboe (1)
-
Aarup Petersen, Henriette (1)
-
Abbaneo, Duccio (1)
-
Abbiendi, Giovanni (1)
-
Abbrescia, Marcello (1)
-
Abdalla, Hassan (1)
-
Abdullin, Salavat (1)
-
Abercrombie, Daniel (1)
-
Abreu, Andrés (1)
-
Acharya, Himal (1)
-
Acosta, Darin (1)
-
Adam, Wolfgang (1)
-
Adams, Eric (1)
-
Adams, Mark Raymond (1)
-
Adams, Todd (1)
-
Addesa, Francesca Maria (1)
-
Adloff, Catherine (1)
-
Adzic, Petar (1)
-
Afanasiev, Serguei (1)
-
Agapitos, Antonis (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nanoparticle based chemical sensor arrays with four types of organo-functionalized gold nanoparticles (AuNPs) were introduced to classify 35 different teas, including black teas, green teas, and herbal teas. Integrated sensor arrays were made using microfabrication methods including photolithography and lift-off processing. Different types of nanoparticle solutions were drop-cast on separate active regions of each sensor chip. Sensor responses, expressed as the ratio of resistance change to baseline resistance (ΔR/R0), were used as input data to discriminate different aromas by statistical analysis using multivariate techniques and machine learning algorithms. With five-fold cross validation, linear discriminant analysis (LDA) gave 99% accuracy for classification of all 35 teas, and 98% and 100% accuracy for separate datasets of herbal teas, and black and green teas, respectively. We find that classification accuracy improves significantly by using multiple types of nanoparticles compared to single type nanoparticle arrays. The results suggest a promising approach to monitor the freshness and quality of tea products.more » « less
-
Palmieri, Alessandro; Yazdani, Sajad; Kashfi-Sadabad, Raana; Karakalos, Stavros G.; Ng, Benjamin; Oliveira, Alexandra; Peng, Xiong; Pettes, Michael T.; Mustain, William E. (, ChemElectroChem)
-
Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; Bergauer, Thomas; Chatterjee, Suman; Dragicevic, Marko; Escalante Del Valle, Alberto; Fruehwirth, Rudolf; Jeitler, Manfred; Krammer, Natascha; et al (, Journal of Instrumentation)Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.more » « less
An official website of the United States government
